Человек в системе рыночных отношений обществознание. Политическая система общества, её структура

В конструкциях и сооружениях большое применение находят детали, являющиеся относительно длинными и тонкими стержнями, у которых один или два размера поперечного сечения малы по сравнению с длиной стержня. Поведение таких стержней под действием осевой сжимающей нагрузки оказывается принципиально иным, чем при сжатии коротких стержней: при достижении сжимающей силой F некоторой критической величины, равной Fкр, прямолинейная форма равновесия длинного стержня оказывается неустойчивой, и при превышении Fкр стержень начинает интенсильно искривляется (выпучивается). При этом новым (моментным) равновесным состоянием упругого длинного становится некоторая новая уже криволинейная форма. Это явление носит название потери устойчивости.

Рис. 37. Потеря устойчивости

Устойчивость – способность тела сохранять положение или форму равновесия при внешних воздействиях.

Критическая сила (Fкр) – нагрузка, превышение которой вызывает потерю устойчивости первоначальной формы (положения) тела. Условие устойчивости:

Fmax ≤ Fкр, (25)

Устойчивость сжатого стержня. Задача Эйлера .

При определении критической силы, вызывающей потерю устойчивости сжатого стержня, предполагается, что стержень идеально прямой и сила F приложена строго центрально. Задачу о критической нагрузке сжатого стержня с учетом возможности существования двух форм равновесия при одном и том же значении силы решил Л. Эйлер в 1744 году.

Рис. 38. Сжатый стержень

Рассмотрим шарнирно опертый по концам стержень, сжатый продольной силой F. Положим, что по какой-то причине стержень получил малое искривление оси, вследствие чего в нем появился изгибающий момент M:

где y – прогиб стержня в произвольном сечении с координатой x.

Для определения критической силы можно воспользоваться приближенным дифференциальным уравнением упругой линии:

(26)

Проведя преобразования, можно увидеть, что минимальное значение критическая сила примет при n = 1 (на длине стержня укладывается одна полуволна синусоиды) и J = Jmin (стержень искривляется относительно оси с наименьшим моментом инерции)

(27)

Это выражение – формула Эйлера.

Зависимость критической силы от условий закрепления стержня.

Формула Эйлера была получена для, так называемого, основного случая – в предположении шарнирного опирания стержня по концам. На практике встречаются и другие случаи закрепления стержня. При этом можно получить формулу для определения критической силы для каждого из этих случаев, решая, как в предыдущем параграфе, дифференциальное уравнение изогнутой оси балки с соответствующими граничными условиями. Но можно использовать и более простой прием, если вспомнить, что, при потере устойчивости на длине стержня должна укладываться одна полуволна синусоиды.

Рассмотрим некоторые характерные случаи закрепления стержня по концам и получим общую формулу для различных видов закрепления.

Рис. 39. Различные случаи закрепления стержня

Общая формула Эйлера:

(28)

где μ·l = l пр – приведенная длина стержня; l – фактическая длина стержня; μ – коэффициент приведенной длины, показывающий во сколько раз необходимо изменить длину стержня, чтобы критическая сила для этого стержня стала равна критической силе для шарнирно опертой балки. (Другая интерпретация коэффициента приведенной длины: μ показывает, на какой части длины стержня для данного вида закрепления укладывается одна полуволна синусоиды при потере устойчивости.)

Таким образом, окончательно условие устойчивости примет вид

(29)

Рассмотрим два вида расчета на устойчивость сжатых стержней – проверочный и проектировочный.

Проверочный расчет

Порядок проверочного расчета на устойчивость выглядит так:

– исходя из известных размеров и формы поперечного сечения и условий закрепления стержня, вычисляем гибкость;

– по справочной таблице находим коэффициент понижения допускаемого напряжения, затем определяем допускаемое напряжение на устойчивость;

– сравниваем максимальное напряжение с допускаемым напряжением на устойчивость.

Проектировочный расчет

При проектировочном расчете (подобрать сечение под заданную нагрузку) в расчетной формуле имеются две неизвестные величины – искомая площадь поперечного сечения A и неизвестный коэффициент φ (так как φ зависит от гибкости стержня, а значит и от неизвестной площади A). Поэтому при подборе сечения обычно приходится пользоваться методом последовательных приближений.

Рассмотрим стержень длиной /, один конец которого закреплен жестко, а на другом свободном конце приложена центральная сжимающая сила F (рис. 15.8).

Рис . 15.8.

Общее решение задачи, записанное в виде формулы (15.15), в этом случае остается в силе. Что же касается граничных условий, то они запишутся в следующем виде:

Искомое решение можно найти и иначе. Условно продолжим стержень вправо от защемленной опоры на длину / симметрично левой части, и тогда вместо граничных условий (15.21), получим новые условия:

Таким образом, новая задача фактически совпала с рассмотренной выше задачей Эйлера. Различие состоит только в том, что в конечном результате (15.20) длину / следует заменить на 21:

Формулу Эйлера можно обобщить также на другие случаи закрепления концов стержня. Для этого в расчетную формулу Эйлера вводится поправочный коэффициент р, называемый коэффициентом приведения длины стержня:

Коэффициент численно равен обратному числу от количества полуволн синусоиды, укладывающихся вдоль изогнутой оси стержня. На рис. 15.9 представлены различные виды крепления концов стержня и соответствующие им коэффициенты приведения длины.

Можно показать, что для первых трех стержней, изображенных на рис. 15.9, а - в, значения коэффициента приведенной длины точное. Что же касается четвертой задачи, то для нее значение приведенной длины определено приближенно. Рассмотрим задачу определения р для этого случая (рис. 15.9, г).

Уравнение деформированной оси стержня имеет вид

Здесь R - величина горизонтальной реактивной силы верхней опоры.


Рис. 15.9.

После преобразования уравнения (15.25) с учетом формулы (15.13) получим

Уравнение (15.26), в отличие от уравнения (15.14), является неоднородным. Его общее решение запишется так же, как и общее решение соответствующего однородного уравнения (15.14). Частное решение имеет вид

Таким образом, решение уравнение (15.25) запишется в форме

В этом решении величина R играет роль третьей неизвестной константы, п поэтому для решения этой задачи необходимо сформулировать третье граничное условие:

Используя граничные условия, получим систему трех нелинейных уравнений

Раскрывая определитель, приходим к следующему нелинейному уравнению:

Решение нелинейного уравнения (15.29) можно получить как численно, так и графически. Для наглядности выберем второй способ решения. Построим графики следующих функций: у = tgkl, у = kl (рис. 15.10).

Рис. 15.10. Графики функций у = tg kl, у = kl

Точка пересечения графиков С соответствует значению корня kl ~ 4,5, откуда

В формулу для критической силы входит главный центральный момент инерции относительно оси Oz - / Ю1 . = так как мы загодя сделали предположение о том, что стержень теряет устойчивость и изгибается в направлении, перпендикулярном к оси Ох. Однако, как уже отмечалось, если при этом условия закрепления опор позволяют стержню деформироваться в любом направлении равновероятно, то стержень потеряет устойчивость в том направлении, в котором момент инерции его поперечного сечения имеет минимальное значение 7 min .

Если же условия закрепления более сложные, то для оценки критической силы необходим дополнительный анализ. Для примера рассмотрим стержень (рис. 15.11), левая опора которого жестко заделана. Что касается правой опоры, то здесь заданы условия подвижной заделки, разрешающей перемещения и повороты в плоскости ху и запрещающие их в плоскости zx. Поперечное сечение стержня - прямоугольное с отношением сторон Н = 2В.


Рис. 15.11.

Закреплению стержня в плоскости ху соответствует коэффициент приведения длины р = 2 (см. рис. 15.8), а в плоскости xz - р = 0,5 (см. рис. 15.9, а).

Подсчитаем критические силы в предположении о том, что потеря устойчивости произойдет: 1) в плоскости ху и 2) в плоскости xz:


Сравнивая значения, заключаем: потеря устойчивости произойдет в плоскости ху , поскольку этому варианту соответствует меньшее значение критической силы.

Таким образом, чем больше точек перегиба будет иметь синусоидально-искривленная ось стержня, тем большей должна быть критическая сила. Более полные исследования показывают, что формы равновесия, определяемые формулами (1), неустойчивы; они переходят в устойчивые формы лишь при наличии промежуточных опор в точках В и С (рис.1).

Рис.1

Таким образом, поставленная задача решена; для нашего стержня наименьшая критическая сила определяется формулой

а изогнутая ось представляет синусоиду

Величина постоянной интегрирования а осталась неопределенной; физическое значение ее выяснится, если в уравнении синусоиды положить ; тогда (т. е. посредине длины стержня) получит значение:

Значит, а — это прогиб стержня в сечении посредине его длины. Так как при критическом значении силы Р равновесие изогнутого стержня возможно при различных отклонениях его от прямолинейной формы, лишь бы эти отклонения были малыми, то естественно, что прогиб f остался неопределенным.

Он должен быть при этом настолько малым, чтобы мы имели право применять приближенное дифференциальное уравнение изогнутой оси, т. е. чтобы было по прежнему мало по сравнению с единицей.

Получив значение критической силы, мы можем сейчас же найти и величину критического напряжения , разделив силу на площадь сечения стержня F ; так как величина критической силы определялась из рассмотрения деформаций стержня, на которых местные ослабления площади сечения сказываются крайне слабо, то в формулу для входит момент инерции поэтому принято при вычислении критических напряжений, а также при составлении условия устойчивости вводить в расчет полную, а не ослабленную, площадь поперечного сечения стержня . Тогда

Таким образом, критическое напряжение для стержней данного материала обратно пропорционально квадрату отношения длины стержня к наименьшему радиусу инерции его поперечного сечения. Это отношение называется гибкостью стержня и играет весьма важную роль во всех проверках сжатых стержней на устойчивость.

Из последнего выражения видно видно, что критическое напряжение при тонких и длинных стержнях может быть весьма малым, ниже основного допускаемого напряжения на прочность . Так, для стали 3 с пределом прочности допускаемое напряжение может быть принято ; критическое же напряжение для стержня с гибкостью при модуле упругости материала будет равно

Таким образом, если бы площадь сжатого стержня с такой гибкостью была подобрана лишь по условию прочности, то стержень разрушился бы от потери устойчивости прямолинейной формы.

Влияние способа закрепления концов стержня.

Формула Эйлера была получена путем интегрирования приближенного дифференциального уравнения изогнутой оси стержня при определенном закреплении его концов (шарнирно-опертых). Значит, найденное выражение критической силы справедливо лишь для стержня с шарнирно-опертыми концами и изменится при изменении условий закрепления концов стержня.

Закрепление сжатого стержня с шарнирно-опертыми концами мы будем называть основным случаем закрепления. Другие виды закрепления будем приводить" к основному случаю.

Если повторить весь ход вывода для стержня, жестко защемленного одним концом и нагруженного осевой сжимающей силой на другом конце (Рис.2), то мы получим другое выражение для критической силы, а следовательно, и для критических напряжений.


Рис.2. Расчетная схема стержня с жесткозакрепленным одним концом.

Предоставляя право студентам проделать это во всех подробностях самостоятельно, подойдем к выяснению критической силы для этого случая путем следующих простых рассуждений.

Пусть при достижении силой Р критического значения колонна будет сохранять равновесие при слабом выпучивании по кривой АВ . Сравнивая два варианта изгиба видим, что изогнутая ось стержня, защемленного одним концом, находится совершенно в тех же условиях, что и верхняя часть стержня двойной длины с шарнирно-закрепленными концами.

Значит, критическая сила для стойки длиной с одним защемленным, а другим свободным концами будет та,же, что для стойки с шарнирно-опертыми концами при длине :

Если мы обратимся к случаю стойки, у которой оба конца защемлены и не могут поворачиваться (Рис.3), то заметим, что при выпучивании, по симметрии, средняя часть стержня, длиной , будет работать в тех же условиях, что и стержень при шарнирно-опертых концах (так как в точках перегиба С и D изгибающие моменты равны нулю, то эти точки можно рассматривать как шарниры).


Рис.3. Расчетная схема с жесткозакреплеными торцами.

Поэтому критическая сила для стержня с защемленными концами, длиной , равна критической силе для стержня основного случая длиной :

Полученные выражения можно объединить с формулой для критической силы основного случая и записать:

здесь — так называемый коэффициент длины, равный:

Для стержня, изображенного на рис.4, с одним защемленным, а другим шарнирно-опертым концами, коэффициент оказывается примерно равным , а критическая сила:

Рис.4. Потеря устойчивости стержня с одним жесткозакрепленным и другим шарнирно-опорным торцом

Величина называется приведенной (свободной) длиной, при помощи коэффициента длины любой случай устройства опор стержня можно свести к основному; надо лишь при вычислении гибкости вместо действительной длины стержня ввести в расчет приведенную длину . Понятие о приведенной длине было впервые введено профессором Петербургского института инженеров путей сообщения Ф. Ясинским).

На практике, однако, почти никогда не встречаются в чистом виде те закрепления концов стержня, которые мы имеем на наших расчетных схемах.

Вместо шаровых опор обычно применяются цилиндрические шарниры. Подобные стержни следует считать шарнирно-опертыми при выпучивании их в плоскости, перпендикулярной к оси шарниров; при искривлении же в плоскости этих осей концы стержней следует считать защемленными (с учетом оговорок, приведенных ниже для защемленных концов).

В конструкциях очень часто встречаются сжатые стержни, концы которых приклепаны или приварены к другим элементам, часто еще с добавлением в месте прикрепления фасонных листов. Такое закрепление, однако, трудно считать защемлением, так как части конструкции, к которым прикреплены эти стержни, не являются абсолютно жесткими.

Между тем, достаточно возможности уже небольшого поворота опорного сечения в защемлении, чтобы оно оказалось в условиях, очень близких к шарнирному опиранию. Поэтому на практике недопустимо рассчитывать такие стержни, как стойки с абсолютно защемленными концами. Лишь в тех случаях, Когда имеет место очень надежное защемление концов, допускается небольшое (процентов на 10—20) уменьшение свободной длины стержня.

Наконец, на практике встречаются стержни, опирающиеся на соседние элементы по всей плоскости опорных поперечных сечений. Сюда относятся деревянные стойки, отдельно стоящие металлические колонны, притянутые болтами к фундаменту, и т. д. При тщательном конструировании опорного башмака и соединения его с фундаментом можно считать эти стержни имеющими защемленный конец. Сюда же относятся мощные колонны с цилиндрическим шарниром при расчете их на выпучивание в плоскости оси шарнира. Обычно же трудно рассчитывать на надежное и равномерное прилегание плоского концевого сечения сжатого стержня к опоре. Поэтому грузоподъемность таких стоек обычно мало превышает грузоподъемность стержней с шарнирно-опертыми концами.

Значения критических нагрузок могут быть получены в виде формул типа эйлеровой и для стержней переменного сечения, а также при действии нескольких сжимающих сил.